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SUMMARY

A general randomization model for experiments in nested block designs is considered
from the point of view of the recovery of inter-block information. First, it is shown how
under the model the best linear unbiased estimators of treatment parametric functions
can be obtained when the variance components are known. Then, a general method of
estimating these, usually unknown, variance components is described and properties
of the resulting empirical estimators of treatment parametric functions are examined.
Some approximation of the variance of any such estimator is considered under certain
design conditions. The paper extends to nested block designs the relevant results
known for ordinary block designs (with one stratum of blocks). '
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1. Introduction and preliminaries

In a recent paper by Califiski and Kageyama (1996a) the recovery of inter-block in-
formation in estimating parametric functions under a randomization model for expe-
riments with one stratum of blocks of experimental units (plots) has been presented
and discussed. The results there are, however, not directly applicable to experiments
in which the available blocks are further grouped into some superblocks, i.e., form
two strata of blocks, one nested in the other. Experimental designs with such nested
blocks are used quite often in practice. Common examples are the lattice designs
introduced by Yates (1936, 1939) or, more generally, the so-called resolvable block
designs (see, e.g., Califiski and Kageyama, 1996b, Sections 4.2 and 4.3). The ran-
domization model for experiments in so extended block designs, called "nested block
(NB) designs”, has been considered by Califiski (1994), but without tackling the pro-
blem of combining information from the various strata. The purpose of the present
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paper is, therefore, to reconsider that randomization model from the point of view of
the recovery of inter-block information. In that way the present paper will supplement
the earlier paper by Califiski (1994) and extend the results given recently by Calinski
and Kageyama (1996a) to a general NB design.

The notation and terminology of the present paper is the same or similar to
that used in the two earlier papers, mentioned above. Thus, a block design for v
treatments in b blocks is described by its v x b incidence matrix N = AD', where
A’ is the n x v design matrix for treatinents and D’ is the n x b design matrix for
blocks. Such design is denoted by D*. Suppose that the blocks of D, called also
sub-blocks, are grouped into superblocks, say a in number. This can be reflected
by the partitions A = [A; : .. : A,], D = diag [D; : ... : D,], and, consequently,
N = [N; : ... : N,], where Ay, Dy and N, = ApDj, describe a component design,
denoted by Dp, confined to superblock h (h = 1,...,a). The resulting design laying
out the v treatments in the a superblocks is then denoted by D and described by its
vXa incidence matrix M = AG', where G’ is the n x a design matrix for superblocks,
of the form

G'=D'diag[lp, : ... : 1p,] = diag[1,, : ... : 1], (1.1)

with by denoting the number of blocks in superblock k, and ny, the number of units in
that superblock, i.e., its size. Note that nj, = 14, kn, if ki, = [Ey(n), .., ko, (1))’ denotes
the vector of block sizes in superblock k. One can also write M = [r1: ... :1g), with 1y,
denoting the vector of treatment replications in superblock h. (Therefore the matrix
M has been denoted by R in Califski, 1994, p. 47). Evidently, N1, = M1, = r is
the vector of treatment replications in the whole NB design, as well as in D* and D,
N1, = k = [k}, ...,k,] is the vector of block sizes in D*, M'l, = n = [ng,...,n,)
is the vector of superblock sizes in D. Similarly as r® = AA’ and k® = DD’ are the
diagonal matrices of treatment replications and block sizes, respectively, n® = GG’
1s the diagonal matrix of superblock sizes. The total number of units used in the
experiment is n = 13r = 1;k = 1/ n.

Furthermore, distinction is made between the potential (or available) number
of superblocks, N4, from which a choice can be made, and the number a of those
actually chosen for the experiment. The usual situation is that ¢ = Ny, but in
general a < N 4. Similarly, it is convenient to distinct between the potential (available)
number of blocks within a superblock and the number of those of them actually chosen
to the experiment. Finally, a distinction is made between the potential number of
units (plots) within a block and the number of those of them actually used in the
experiment.
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2. The randomization model

While in an ordinary block design the stratification of the experimental units leads to
three strata, of units within blocks, of blocks within the total experimental area, and
of the total area (cf. Califiski and Kageyama, 1991, p. 105), in the extended situation
to be considered here four strata can be distinguished. Those are of units within
blocks, of blocks within superblocks, of superblocks within the total experimental
area, and of the total area. Consequently, the extended randomization model has to
take into account three instead of two stages of randomization, viz., of units within
blocks, of blocks within superblocks and of the latter within the total area.

The randomization model for experiments in NB designs has been considered
by Califiski (1994) and also by Mejza and Kageyama (1995). It differs from the
randomization model for ordinary block design, considered by Califiski and Kageyama,
(1991, 1996a), by the addition of the component G’c, where G is the design matrix
for superblocks, defined in (1.1), and c is an a x 1 vector of superblock random effects.
Thus, with this component, the model can be written in matrix notation as

y=AT+Ga+D'B+n+e, (2.1)

where y = [y, ...,y,)' is an n x 1 vector of observed variables, with Yh representing
the variables observed on nj; units of the superblock h, T is a v x 1 vector of treat-
ment parameters, 3 = [3],..., ;]  is a b x 1 vector of block random effects, with B
representing the effects of the by, blocks in the superblock %, and where 7 and e are
the corresponding n X 1 vectors of unit error and technical error random variables,
respectively. The expectation vector remains unchanged, i.e.,

B(y) = A'r, (2:2)
while the dispersion matrix is of the extended form

Cov(y) = (G'G~N3'1,14)0% + (D'D - B7'G'G)o%
+ (I ~ K D'D)o}y + Lo, (23)

where N, is the number of available superblocks, and By is a weighted harmonic
average of the available numbers of blocks (B, ..., By,) within the N4 available
superblocks, similarly as Ky is such an average of the available numbers of units
within the By + ... + By, available blocks, and where 0%, 0%, 0 and o2 are the
variance components related to the random vectors a, 3, i and e, respectively, all
these quantities being defined precisely in Califski (1994, Section 2.1). Since (2.3)
can also be written as

Cov(y) = 03(G'T1G + D'T2D +1,), (2.4)
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where

Ty =Ty — N3'1a140% /0%, 71 = (0% — Bilog)/ot, ol = o +02  (2.5)
and

Iy = Ib721 Yo = ((TQB - K;lg?})/g%’ (26)
the combined analysis of an experiment in an NB design can be seen as a straight-
forward, though not very simple, extension of that described for an ordinary block

design (i.e., with one stratum of blocks) by Caliniski and Kageyama (1996a, Section
3). Details of this extension will be presented in the next section.

3. Recovery of inter-block information in a general NB design

The main estimation results obtained for NB designs by Califiski (1994, Section 2.2)
show that unless the estimated function ¢’ satisfies certain quite restrictive condi-
tions, there does not exist the best linear unbiased estimator (BLUE) of it under the
randomization model (2.1). However (cf. Califiski, 1994, Section 3), in many, though
not in all, cases the estimation of a contrast of treatment parameters, ¢’7, can be
based on information available in two or three of the experimental strata. Unfortuna-
tely, each of them provides a separate estimate of the contrast, often of quite different
value. Therefore, a natural question arising in this context is whether and how it is
possible to utilize the information from various strata to obtain a single estimate in
a somehow optimal way. Calinski and Kageyama (1996a) have considered this for a
general, but ordinary, block design, where the combination of information concerns
two strata only. Here an extension of their results will be presented in a way applicable
to any NB design for which the general randomization model (2.1) is appropriate.

8.1. The BLUFEs under known variance components

First let the problem be considered under an unrealistic assumption that the variance
components appearing in the dispersior matrix (2.3) are known, or at least their
ratios v, and v, defined in (2.5) and (2.6) are known. Then the following results are
essential (cf. Calinski and Kageyama, 1996a, Section 3.1).

LEMMA 3.1. Let the model be as in (2.1), with the expectation vector (2.2) and
the dispersion matriz (2.3), the latter written equivalently as in (2.4). Furthermore,
suppose that the true values of v, and vy are known. Then,

(a) any function w'y which is the BLUE of its expectation,

(b) a vector which is the BLUE of E(y) = A'T and, hence,

(c) a vector which gives the residuals,
all remain unchanged when altering the present model by deleting N3 (0% /02)1.1,,
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in (2.5), i.e., by reducing (2.4) to
Cov(y) = 0}(1,G'G + 4,D'D + 1,) = 0iT, (3.1)

where T = 4, G'G + v,D'D + I,,. The matriz T is positive definite (p.d.) if y; = 0
and vy > —1/kmax, where knayx = max;y kj(n)-

Proof. Note that, with Par = A’r %A, the equality (G'T1G + D'TyD + L,)(I, —
Pa/) = (11G'G +7,D’'D + I,)(I, — Par) holds. This implies that (a) the relevant
condition for w, given in Theorem 3 of Zyskind (1967), is satisfied under the original
model if and only if it is satisfied under the alternative model with (3.1), and that (b)
the BLUE of A’T, as given by Rao (1974, Theorem 3.2), remains unchanged when
(2.4) is replaced by (3.1), so that also (c) the residual vector is unchanged then. The
matrix T in (3.1) is p.d. if y; > 0 and v, > —x'x/x'D'Dx, for any vector x, and the
latter holds if yg > —1/56max, Where s6max is the maximum eigenvalue of D'D (and of
DD’), this being kmax. (These assumptions on vy, and vy, are reasonable, as v; > 0 if
and only if 0?4 > BgflaQB, and for vy > —1/kmax it is sufficient that Kz > kunax and
Ko 402 > 0; of course v, > 0 if and only if 03 > Kz'o?.) O

THEOREM 3.1. Under the model and assumptions as in- Lemma 3.1, including the
assumption that v, > 0 and v9 > —1/kmax,
(a) the BLUE of T is of the form

F=(AT AN AT Yy, (3.2)
where T~ can be taken as
T = ¢+ Dk Ok + 7,0, + yidiag[ly, 1}, @ ... s 1,15 ) "'k ™°D, (3.3)

with ¢ =1, — D'’kD;
(b) the dispersion matriz of T is

Cov(#) =02(AT AN — N0 1,10 (3.4)
(c) the BLUE of ¢t for any c is ¢'¥, with the variance ¢’ Cov(¥)c, which reduces to
Var(c'T) = o2c/ (AT T A") e, (3.5)

if ¢'T is a contrast;
(d) the minimum norm quadratic unbiased estimator (MINQUE) of o2 is

6t =(n—v)ly— AFp . = (n—v) "y - AF) Ty - A'F). (3.6)
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Proof. From Theorem 3.2(c) of Rao (1974), and Lemma 3.1 above, the BLUE of A'r
is A'T=Pasp-1y, where Parpr = A/(AT 1A/ TAT. Hence the result (3.2).
This then implies (3.4), since (2.4) can be written as Cov(y) = 03T ~ N;'041,1.
Formula (3.5) follows from (3.4) directly, and formula (3.3) can easily be checked.
Formula(3.6) follows from Theorem 3.4(c) of Rao (1974) by noting that the residual
sum of squares is of the form

(X, - PA,;T_l)nyF_l =Y (I —Parp1)T YL, — Parr)y, (3.7)

equivalent to (3.13) of Rao (1974), which provides the MINQUE of do%, where d =
rank(T : A") —rank(A') =n—-v. O

Note that ¢ in (3.3) is responsible for the intra-block information, while the term
following it takes care of the inter-block information, with v, responsible for that
within the superblocks and with «, for that between the superblocks, the maximum
recovery of the former information being achieved at v, < 0 and that of the latter at
71 =0.

3.2. The estimation of unknown variance ratios

Results established in Section 3.1 are based on the assumption that the ratios v, and
7, are known (see Lemma 3.1). In practice, however, this is usually not the case.
Therefore, to make the theory applicable, estimators not only of o2 but also of v, and
7Y, are needed. Although there may be various approaches adopted for finding these
estimators, that utilized in Califski and Kageyama (1996a) seems to be particularly
suitable. Let its extension for NB designs be presented here in details.

First let the residual sum of squares (3.7) be written as

2
H (In - ]-:)A’;T_1 )yHT—-l = y/RTRy
= v;yRG'GRy + v,yRD'DRy + y'RRy, (3.8)

where »

R=T 'L, —Pap)=T ' -T 'A(AT AN IAT L. (3.9)
Equating then the partial sums of squares in (3.8) to their expectations, one obtains
the set of equations

tr(RG'GRG'G) tr(RG'GRD'D) tr(RG'GR) | [ o2,
tr(RD'DRG'G) tr(RD'DRD'D) tr(RD'DR) | | o2y, | =
ir(RG'GR) tr(RD'DR) tr(RR) o?

y'RG'GRy
= | yYRD'DRy (3.10)
y'RRy



Recovery of inter-block information in a nested block design 15

from which estimators of 63v,, 027, and 0?2, and hence of 1 and 4, can be obtained.
Exactly the same equations, as those in (3.10), follow from the MINQUE approach
of Rao (1971). Also note that, on account of the equalities

tr(RG'GRT) = tr(RG'G), tr(RD'DRT) = tr(RD'D) and tr(RRT) — tx(R),
the equations (3.10) can equivalently be written as
¥YRG'GRy =0itr(RG'G), yRD'DRy =o2tr(RD'D), y'RRy =o2tz(R), (3.11)

and the equations (3.11) can be shown to coincide with those on which the so-called
modified (or marginal) maximum likelihood (MML) estimation method is based, the
method being also known as the restricted maximum likelil 1ood (REML) approach
(cf. Patterson and Thompson, 1975; Harville, 1977).

Clearly, the equations (3.10) have no direct analytic solution, since the matrix
R itself contains the unknown paramcters v, and +,, as can be seen from (3.3) and
(3.9). Therefore, to solve these equations, or any equivalence of them, an iterative
procedure is to be applied (cf. Patterson and Thompson, 1971, Section 6). It starts
with some preliminary estimates Y1,0 and 7, o incorporated into the equations (3.10)
by changing the matrix R there to

Ro=T;' - Ty A(AT; A AT, (3.12)
where
To'=¢ + Dk ¥k + Yool + 71 0diag[le, 15, 1. 15,15 NTKTD (3.13)

(with Tg! — ¢ if Y2,0 — ©0). However, instead of the eanations so obtained, it is
more convenient to solve iteratively their equivalence of the form

tI(RQG’GRoGIG) tr(R()G/GRQD,D) tI'(RQGIG] —I (f%("/l — "/1‘0)
tr(RogD'DRoG'G)  tr(RgD'DRoD'D)  tr(RoD'D) o3 (y2 —va0) | =
tr(RgG'G) tr(RoD’'D) n-—uv _| o?
y’RgG’GROy
= | yYR¢D'DRyy | . (3.14)
y'Roy
By solving the equations (3.14) one obtains the revised estimates of vy and 74, which

can be written as

a®y'RoG'GRoy+a"'y'RoD'DRy+a"2y'Ryy
a?y'RoG'GRoy+a?y'RgD'DRgy +a?2y'Ryy

Y1 ="Y1,0F
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and
A= a'%y'RoG'GRyy+a'ly’'RgD'DRgy+a'?y'Roy (3.16)
2 TR0 G209 RyG/GRoy+a2ly' RoD'DRoy +a??y'Roy’ '
where
00 2 01 10
a’ " = a1i1a92 — ajg, a s =a = a19ap2 — 201022,
02 20 11 2
a =a = ap1a12 — 11002, a”" = agpa22 — Aga,
12 21 22 2
a” =a"" = ap1a02 — Agodi2, a” = agoa11 — Gq,
with

apgg = tr[(GRoG’)Z], apy — tl‘(DRoGIGR,QDI), agg = tr(GRQG/),

ail = tr[(DRoD/)Q], aig = tr(DRoD/) and a9y =n — .

Thus, a single iteration of the iterative method (which extends that of Patterson
and Thompson, 1971, p.550) consists here of the following two steps:

(0) One starts with some preliminary estimates v; o (> 0) and 795 (> —1/kmax)
of v, and v,, respectively, to obtain the equations (3.14).

(1) By solving (3.14), revised estimates of y; and -y, are obtained in the form
(3.15) and (3.16), respectively, and these are then used as new preliminary estimates
in step (0) of the next iteration.

However, it should always be observed that the original as well as the new pre-
liminary estimates satisfy the conditions ;5 > 0 and Yo,0 > —1/kmax- Therefore,
if any of the formulae (3.15) and (3.16) gives a revised estimate not satisfying these
bounds, the result is to be adjusted before entering step (0), in a way similar to that
given in Calinski and Kageyama (1996a, p.367), following the suggestion of Rao and
Kleffe (1988, p.237).

The described iteration is to be repeated until convergence, i.e., until the equa-
lities

y'RoG'GRyy  y'RgD'DRoy  y'Roy

tr(GRoG') . tf(DRoD’) n n—"v
are reached. The values 4; = 7, g and 4, = 75 ¢ satisfying them are then considered as
the final estimates of v, and 7, respectively, and the resulting ratio &% =y'Ry/(n—
v), with R = Rg obtained according to (3.12) but after replacing Y10 20d 7y9 ¢ in (3.13)
by the final values 4, and 4, respectively, can be considered as the final estimate of

o?. Although the convergence of this process has not been proved, some experiences
(cf., e.g., Rao and Kleffe, 1988, p.226) indicate that the procedure should work well
in practice.
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Now, inserting in formula (3.2), instead of T~!, the matrix T~ resulting from
the replacements in (3.13) made as described above, an empirical estimator

F= (AT AN ATy (3.17)
is obtained. The adjective ”empirical” is used here to indicate that the unknown
variance ratios ; and -y, appearing in T have been replaced by their empirical esti-
mates (cf. Rao and Kleffe, 1988, Section 10.5). Of course, (3.17) is not the same as
the BLUE (3.2) obtainable with the exact values of v, and v,.

8.8. Properties of the empirical estimators

To gain an insight into the properties of the empirical estimator (3.17) of T and,
hence, of such estimator of any parametric function c¢’r, use can be made of the
approximation suggested by Kackar and Harville (1984). Its application becomes
straightforward when it is possible to represent T in terms of some simple linear
functions of the observed vector y, as shown by Califiski and Kageyama (1996) for
experiments with one stratum of blocks. For NB designs such representatioﬁ is not
readily available in the general case. However, it can easily be obtained if the design
satisfies the following two conditions: '

(i) the design with respect to sub-blocks, D*, described by N, is proper (equiblock-
sized), i.e., k = k1, and

(ii) the design with respect to superblocks, D, described by M, is connected,
proper and orthogonal, i.e., M = o~ !r1/.

The above conditions imply, among others, that ny = ... =n, = ng (= n/a) and
that b) =..= ba = bo (: b/(l = 'no/k})

In fact, the possibility of obtaining a simple representation of the éstimator (3.17)
in terms of linear functions of y depends on the availability of a suitable spectral
decomposition of the matrix ¢, T¢,, where ¢, =1,, — A'r ®A and where T is as in
(3.1). For this it is required that the component matrices in

¢*T¢* ' 71¢*G/G¢* + 72¢*D/D¢* + d)* (3]‘8>

commute in pairs. Fach of the first two on the right-hand side in (3.18) commutes
with ¢, always. If the conditions (i) and (ii) hold, then also the first two commute
one with the other. Although these conditions may seem restrictive, it can be claimed
that a large number of NB designs used in practice satisfies (i) and (ii). For those
which do not, the method described here needs further elaboration, but this will not
be considered in the present paper.
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Thus, from now on it is assumed that the NB design under consideration satisfies
the above conditions (i) and (ii). This allows to obtain not only the decomposition

h.
¢, D'Do, = " X\v;v} (3.19)

=1

[cf. (3.25) in Calinski and Kageyama (1996a)], but also
g«
.G'G, = v, v}, (3.20)

where, simultaneously, the vectors vi, J=1,...,94, ..., hs,..., n — v, are orthonormal
eigenvectors of the matrix ¢,, corresponding to the unit eigenvalues of it, and where
g+ = rank(G¢,G’) and h, = rank(D¢,D’). Note that G¢,G’ = n® — M'r—*M is
a dual of the matrix r® — Mn™°M’ of rank g (say) and D¢, D' = k% — N'r—9N is
a dual of the matrix r® — Nk™°N’ of rank h; (say; cf. Califski, 1994, p. 58). Hence,
in general, g, = a — v+ g and h, = b— v+ hy. Here, under (i) and (i), g=v—-1
and, hence, g. = a — 1. If, in addition, the design D* is connected, then Ay = v —1
and h, =b— 1. It can also be shown that, under (i) and (ii),

M=..=A, =k and = .=y, = np(=bok).

Now, with (3.19) and (3.20) obtained under the conditions (i) and (ii), the spec-
tral decomposition of ¢, T¢, gets the form

gx
3. Tp, = (y1n0+72k+1)) vV} (3.21)
i=1
ha
+ Z (72Aj +1vj -+ Z vV J,
J=gxt+1 j=h.+1

and, since the Moore-Penrose inverse of ¢, T¢, can be shown to be equal to R [see
(3.9)], it follows from (3.21) that

R = (¢*T¢*) (/Van + ’ng + 1 ZVJ ] (322)

h

+ Z (Y9 + 1)~ vjv—i— Z vV}

J=g~+1 J=h.+1
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From (3.9) and (3.22) the estimator (3.17) can now be written as

;‘
I

G h
_ . —5
F+r A(TR-TR)y =+ +r ND ¢t E vjiz; + E C;lvjzj
7=1 IJ=g«+1

ha
_ o~ =6 —1. ..
= T+r °ND E ¢ vjzj,
J=gu+1

since, under (i) and (ii), NDv; = 0 for j = 1, ..., g,, where

5:71n0+’72k+1: C] :72)‘j+17

and where
b — (44b Y
2 = 71 0:" Y2 A('Yl 0 + 72)‘,1_ for i=1,.., 0 (3_23)
Y10 + ok + 1 g
and
Yo— Y2 .
=L T2 fi =g+ 1,..., ha. 3.24
Z; %/\j_'_lv]y or J=0x+ ( )

The relevant representation of ¢/T = ¢'T is then obvious.
Now, Lemma 3.2 of Calinski and Kageyama (1996a) can be extended as follows.

LEMMA 3.2. Let the model of the variables observed in an NB design satisfying the
conditions (i) and (ii) dbe as in (2.1) and suppose that the wvalues of vy, and v, in
(2.4) are unknoun, except that they satisfy the limits given in Theorem 3.1 (to secure
that T is p.d.), the same being satisfied by their estimates (to secure that T is p.d.).
Furthermore, let the random wvariables {z;} defined in (3.23) and (3.24) satisfy the
conditions

E(z;) =0, E(zjz;) =0 and Var(z;) < oo

for allj and §" # j (= 1,...,h.) and for all admissible values of v; and y,. Then the
estimator T has the properties

E(F)=E(f)=T1 (3.25)
and
Ry
Cov(T) = Cov (#) + r°ND Y (7 *Var(z)v;viD'N'r°. (3.26)
.7=Q*+1

From Lemma 3.2 it follows immediately for ¢’T that

E(c't) =c'r (3.27)
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and that

Var(c'T) = Var(c/t) Z ¢;2(c'r  NDv;)*Var(z;). (3.28)
J=gx+1
To proceed further, it will be helpful first to note that, on account of (3.22), one
can write

gx
YRG'GRy = ¢ 7ng Y (viy)?, (3.29)
1=1
g«
yRD'DRy = ¢7%k > (viy)* + Z (72N (Vi) (3.30)
Jj=1 J=g«+1
and
gx h. n—uv
y'RRy = ¢72 Z(V}y)2 + Z C;Q(V;y)2+ Z (v;y)2. (3.31)
j=1 j=ga-t1 j=hat1

Thus, the estimators 4; and 9,, as obtainable from the equations (3.10), and the
random variables {z;}, defined in (3.23) and (3.24), can be expressed as functions of
y solely through the variables

T; =vViy for j=1,...,n—v. (3.32)

Next, utilizing Lemma 3.3 of Calinski and Kageyama (1996a), one obtains the
following result.

COROLLARY 3.1. Let the random variables {x;} defined in (3.32) have mutually in-
dependent symmetric distributions around zero, in the sense that x; and —z; are
distributed identically and for each j (= 1,...,n — v) independently. Furthermore,
let each of the statistics 4, and 44 be an even function of any x;, in the sense
that it is invariant under the change of x; to —x; for any j. Then the joint di-
stribution of the random wariables {z;}, defined in (3.23) and (3.24), is symme-
tric around zero with regard to each zj, in the sense that the distribution is inva-
riant under the change of z; to —z; for any j. Hence, E(z;) = 0 for all j and
E(zjz;) = 0 for all j # j (= 1,..,hy), prowided that these expectations exist.
[It is sufficient here to consider the random variables defined in (3.24) only.]

With these results the following main theorem (similar to Theorem 3.2 of Califiski
and Kageyama, 1996a) can be proved.

THEOREM 3.2. Let, for an NB design satisfying the conditions (1) and (ii), the obse-
rved vector y have the model (2.1) with properties (2.2) and (2.3), and suppose that
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the ratios v, and vy, appearing in (2.4) are unknown. Furthermore, let the distribution
of y be such that it induces the random variables {x;} defined in (3.32) to have mu-
tually independent symmetric distributions around zero. Under these assumptions,
if the statistics 4y, and ¥, used to estimate vy, and vy, respectively, are completely
eapressible in terms of even functions of {x;}, i.c., depend on'y solely through such
functions, then, for all values of v and v, and of their estimators satisfying the con-
ditions v1, 41 > 0 and vy, 43 > —1/kmay, the estimator T defined in (3.17) has the
properties (3.25) and (3.26), and hence ¢/ has the properties as in (3.27) and (3.28),
for any c.

This theorem can be proved in a similar way as Theorem 3.2 in Calinski and
Kageyama (19962, p.370). It should also be noted that Theorem 3.2 1s general in the
sense that it applies, under its assumptions, to any estimators of v, and v, which
depend on the observed vector y through even functions of {z;} only.

Remark 3.1. In connection with the assumptions of Theorem 3.2 the following results
are obtainable.
(a) The random variables {x;} defined in (3.32) have the properties

E(z;) =0 (3.33)
and
Uié for j:jI:17"')g*:
o)) — 01¢; for j=j" =gi+1, ...
Blwsey) = ot for j=j3'=h.+1,..,n—v, (3.34)
0 for j#7,

resulting from the properties (2.2) and (2.4) of y and the definitions of the vectors
{vj}

(b) If y has an n-variate normal distribution, then also x = [Z1, .y Tr—s]’, with
= v;y, has an (n —v)-variate normal distribution, which automatically implies, on
account of (3.33) and (3.34), that its elements have mutually independent symmetric
distributions around zero.

(c) Since the functions of the random vector y appearing in equations (3.10) are,
as shown in (3.29), (3.30) and (3.31), completely expressible in terms of the squares
13 = (v;-y)g, j =1,..,n— v, the statistics 4; and %, obtained from the solution of
these equations (or their equivalence) satisfy the conditions of Theorem 3.2, provided

that their values are not below the lower limits assumed for them.

It follows from Theorem 3.2 that if the unknown values of v; and v, appearing
in (3.3) are replaced by their estimators 4, and %, obtainable in accordance with
the conditions of this theorem, then the unbiasedness of the estimators of T and ¢'r
established in Theorem 3.1 is not violated (cf. Klaczynski, Molinska and Molifski,
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1994), but the variance of the estimator of ¢/ is increased, as can be seen from
(3.28). Although the exact formula of Var(z;) = E(27) is in general intractable, it can
be approximated similarly as shown in Calinski and Kageyama (1996a). For this note
that by expanding z; in a Taylor series in 4 about the point -y, where v = v1bo + 2
with 4 = 4,bg + 4, for j =1,..., g, and v =, with 4 = 4, for j = g, + 1, ..., ks, one

obtains the approximation
N 2
2 (T TY 2
z; & (7/\j +1> ;. (3.35)
Then, applying Theorems 2b.3(i) and (iii) of Rao (1973) to the expectation of (3.35),

one can write
- 2
2\ ~v Y= 2 ~
E(z2) ~E {(WH) E(«? w)} (3.36)

If the number of x;’s from which the statistic 4 is calculated is large, i.e., if in the
case of the equations (3.10) the number n—wv is large, then the statistical dependence
between 1:] and 4 can be ignored and the unconditional expectation E(xz ) can be
used instead of E(z ) | 4). This would allow the approximation (3.36) to be replaced
by

E(z}) 2 (v + 1) o1E[(5 — 7)Y, (3.37)
where the mean squared error E[(§ — v)?] (MSE of 4) becomes Var(4) if 4 is an

unbiased estimator of y. With the approximation (3.37), the variance (3.28) can be
approximated as

h
Var(c/T) & Var(c') + o2E[(§ — 72 Z C ¢'r°NDv,)2 (3.38)
Jj=g-+1

Now, to make the approximation (3.38) applicable, the MSE of 4, needs evalua-
tion or approximation. If the distribution of y is assumed to be normal and 4, and ¥,
are obtained by solving the equations (3.10) [or equivalently (3.14)], i.e., by the MML
(REML) method, then E[(¥; — 75)?] can be replaced by the asymptotic variance of
%, obtainable from the inverse of the appropriate information matrix. Noting that
the information matrix associated with the MML (REML) estimation of y,v, and

e
o7 is here

tr[(RG'G)? tr(RG'GRD'D) o %tr(RG'G)
5 | t(RD'DRG'G) tr[(RD'D)’] o7 tr(RD'D)
o7 2tr(RG'G) o7 ?tr(RD'D) o i n—-v) |

(cf. Patterson and Thompson, 1971, p. 554), and taking its inverse, it can be found,
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on account of (3.22), that
2
h. 2 . 1 ha -
Zj:g*-u()‘j/gj) ~(n—v—a+1) (Zj:g*+1)\j/<-j)

Thus, when under the normality assumption the ratios y; and v, are estimated by
the MML (REML) method, then the variance (3.38) can further be approximated as

Varas(¥,) = (3.39)

h.
Var(c/'t) & Va.r(g’;) + 02 Varas(3,) z (;3(c'r_§Nva)2, (3.40)
i=gx+1

with Varas(%,) given in (3.39).

The approximation (3.40) is equivalent to that which has been suggested by
Kackar and Harville (1984), here applied to the variance (3. 28) The closeness of this
approximation has not been investigated yet.

When taking into account the asymptotic properties of the MML (REML) estima-
tors of ; and v,, or equivalently those of the iterated MINQUE of these parameters
(see, e.g., Brown, 1976; Rao and Kleffe, 1988, Chapter 10), it can be observed that,
under the normality assumption, the estimators 4, and 4, obtained by solving the
equations (3.10) [or (3.14)] are asymptotically unbiased and efficient (i.e., with the
smallest possible limiting variance). Thus, it can be concluded that the approxima-
tion (3.40) approaches the exact value of Var(g’\;) as n—wv tends to infinity. However,
since in practical applications the increase of n over v is possible within some limits
only, the formula (3.40) will always remain merely an approximation. Not much till
now is known about the closeness of this approximation. It remains to be investigated.

4. Concluding remarks

The theory of estimating the vector T and a parametric function ¢’r, presented in
Sections 3.1 and 3.2, is applicable to any NB design, regardless of the constructions
used for the composing designs D* and D (see Section 1). The approximation formula
(3.40) for the variance of the resulting estimator of ¢/T can, however, be applied
under ceratin conditions only. To satisfy them it is required that the NB design is
composed of a proper (equiblocksized) block design D* and a superblock design D
which is not only proper but also connected and orthogonal. These requirements
are met by most NB designs commonly used in practice. Such NB designs have
been considered recently by Mejza and Kageyama (1995), and called by them proper
superblock orthogonal NB designs. Note that among the traditional block designs the
well known lattice designs belong to this class of NB designs, as well as all other proper
resolvable incomplete block designs (see, e.g., John, 1987, Sections 3.4 and 4.7-4.10).
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In fact, the wide class of a-resolvable block designs originated by Bose (1942) and
generalized by Shrikhande and Raghavarao (1963), later utilized and extended further
by various authors, in particular by Kageyama (1972, 1973, 1976), by Patterson and
Williams (1976), Williams (1976) and Williams et al. (1976), and by Ceranka et al.
(1986), is a subclass of the above class of NB designs, with the exception of those a-
resolvable block designs which are constructed as non-proper (of unequal block and/or
superblock sizes). For more references on resolvable block designs see, e.g., Califiski
and Kageyama (1996b, Sections 4.2 and 4.3).

It should, however, be mentioned that the most general class of resolvable block
designs considered by Kageyama (1976), that which allows for unequal block and
superblock sizes, exceeds the above class of NB designs. Therefore, there is still a
need for an approximation formula morc general than that given in (3.40). This
requires some further research and is beyond the scope of the present paper.
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Odzyskiwanie informacji migdzyblokowej gdy doéwiadczenie zalozone jest
w ukladzie o blokach zagniezdzonych

STRESZCZENIE

W pracy oméwiono ogélny model randomizacyjny dla dogwiadczen planowanych w
uktadach o blokach zagniezdzonych (ukiadach blokowych hierarchicznych), rozwazany
z punktu widzenia odzyskiwania informacji migdzyblokowej. Najpierw pokazano, jak
w tym modelu mozna otrzymaé najlepsze liniowe estymatory nieobcigzone funkcji
liniowych parametréw obiektowych przy zalozeniu, ze komponenty wariancyjne zwia-
zane z tymi estymatorami sa znane. Nastepnie przedstawiono ogdlng metode esty-
mowania tych zwykle nieznanych komponentéw wariancyjnych oraz podjeto prébe
zbadania wlasnoéci estymatoréw empirycznych otrzymywanych w wyniku zastapie-
nia w powyzszych estymatorach liniowych wystepujacych tam komponentéw warian-
cyjnych ich ocenami. Zaproponowano takze pewns metode aproksymowania warian-
cji tak uzyskiwanych estymatoréw, majaca zastosowanie do wiekszoécl rozwazanych
ukladéw. Praca pozwala przenies¢ na uklady o blokach zagniezdzonych odpowie-

dnie wyniki znane wczeéniej dla zwyczajnych ukladéw blokowych (o jednej warstwie
blokéw).

SLOWA KLUCZOWE: estymacja komponentéw wariancyjnych, model randomizacyjny,
najlepsza liniowa estymacja nieobciazona, odzyskiwanie informacji migdzyblokowej,
uktady o blokach zagniezdzonych (uklady blokowe hierarchiczne).



